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ABSTRACT

The present paper considers optimal means of characterizing the distri-

bution of product energy states resulting from reactive collisions of molecules

with restricted distributions of initial states, and vice versa, iLe., character-

izing the particular reactant state distribution which yields a given set of

product states, at a specified total energy E . The Si-matrix, or reaction.

probability matrix P(E) , "global" in nature, contains much more detail than.

necessary to reproduce the results-of any single specific experiment or computer-

simulation thereof (via classical mechanical trajectory calculations). More-

over, since reactant and/or product state resolution is always experimentally
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limited (to a greater or lesser degree), data are necessarily coarse-

grained accordingly. Many quantal features are thereby lost and the

results are often at a level appropriate for comparison with classical

calculations (e.g.,in the form of low-resolution contour maps of energy

disposal). Such contour plots of the yield function Y or the averaged

transition probability w (the "poor-man's" P-matrix) nevertheless con-

tain the essence of the dynamical results. It is suggested to represent

the energy-dependence of global-type results in the form of square-faced

bar plots, and of data for specific-type experiments (or computer simula-

tions) as triangular-faced prismatic plots (contour maps vs. E ) . The

essential parameters defining the internal state distribution are isolated,

and the information content I(E) of such a distribution (for a micro-

canonical ensemble) is put on a quantitative basis. The relationship

between the information content, the surprisal, and the entropy of the

continuous distribution is established. The concept of an "entropy

deficiency" AS', which characterizes the specificity of product state

formation, is suggested as a useful measure of the deviance from

statistical ("phase-space dominated") behavior. The degradation of

information by experimental averaging is considered, leading to bounds

on the entropy deficieieyc:
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1. Introduction

Important information on the dynamics of reactive molecular collisions

is derived from a knowledge of the distribution of internal energy states of

the products or the relative reactivity of reactants in different excited

internal states

In the present paper, for simplicity we restrict our attention to the

simplest case of a three-center, atom-transfer reaction of the type

A + BC + ABt + C, where the dagger denotes internal excitation of the product

diatomic. An example is the hydrogen-abstraction reaction:

CR + HI(vJ) + HCt(v',J') + I, (1)

one of a number of three-center reactions which have been well-studied via

the infrared chemiluminescence technique by Polanyi and his followers 5.

Ordinarily the initial internal state (v,J) distribution has been

essentially Boltzmann, fixed by the temperature of the reactant molecules BC.

The experimental measurements yield the internal state distribution (v',J')

of the product molecules AB , often found to be non-Boltzmann in character.

In many cases extensive population inversion occurs, thereby providing the

basis of chemical laser action2b

With the exception of the hydrides, the resolution of individual

internal quantum states of the products has not yet been feasible. For most

practical purposes, when the density of internal states is high, it is

therefore convenient to regard the internal energies as continuous variables,

say EV, and ER,, representing product vibrational and rotational energies,

respectively. Even when individual states have been resolved, it is often

useful to "smear out" the discrete distribution to convey a qualitative

picture of the overall experimental results. Moreover, with the wide

utilization of classical mechanical trajectory calculations and Monte Carlo

evaluation of reactive scattering cross sections it behooves us to adapt

to classical, continuous probability density functions, histograms and "bins",

rather than to attempt to "quantize" artificially -the classically calculated

results. In sections 2-4 and 9 we will concern ourselves mainly with coarse-

grained product (and reactant) energy distributions.

Given the internal energy distribution of product (AB ) molecules

one can immediately calculate the distribution of relative translational
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energy ErT,* of the recoiling products6D mig2. ng use of the energy conservation
relation:

E = ETO - Ev + ER V + EM AEo (2?

energy of the A + BC system, ETD the vibrat.ional and rotational energies , E
V

and ERD of the reactant molecule BC1, a.d the zero-poin' to zero-point

reaction exoergicity , AEoo Thae translaticnal distribution of products can

be measured directly, in the course of molecular bee-n scattering experiments,
7-9via the velocity - ,nalysis tecnique .The .:cssed molecular beam method

has also yielded f.ve dire ct iinformation on . ... .......... sate ditrib-.,tions 0

For a number of reactions it has been possib.e to carry out rotational .s..'e

analysis, 1t12 and , more recently, vibrational state analysis has been

accomplishedl3 1l 4 The chemical laser techniqu3, as pioneered by Piment:el

and co-workers has provided independent d.ata on relative popula;.ions of

vibrational states of product molec¢U].e, wJh1ich a..Xs 7dirctcly Gconarablo

with the ir cc tEeS3 r:s.t....s X~t T cl. . r OCf... c. z O.on o.f t.

energy disposal i :..ee. ary ex8ogC ''.c. ".r- 'msn'c ay r

the field of &deaz chemical kinetics°

Alternative information on microscopic chemical reaction dynamics

is available from experiments involving reactants in exci.ed internal states.

Thus far such stucLUes have been concerned with endoergic reactions or those

with an energy barrier to be surmounted. The influence of reastant internal

energyE Ein + ER, controlled by the temperature of the BC molecule , at

constant ET, has been studied in one such case by Schmeltekopf et al. 7 and

the separate effect upon the reaction cross section of E at fisxed E
R

and E.

has been investigated by Chupka 'et alo and by Broo'4 ,.: co.-wo2ko ors

The possibility of utilizing judicious vibrational excitation of react4ans

for selective influence of the product molecular configuration has already

been considered2 0
, and selective excitation by lasers is nvJ a rapidly

developing field2ii with many practical impllicationso2 2

The considerable experimental activity in this field has stimulated
23 24

much theoretical inte®sst . Anlauf et al 2 4 oiinted out the uti2ity of

microscopic rvemsiility to gain i fora. ion ~the) influence of raactnnt

excitation on the rate of an ondoorgic reaction1, basd wpon product
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internal state-distributions for the exoergic reaction. Kinsey25 showed how

such considerations dould-be most fully exploited when only limited data of

various ,types oni the -exoergic reaction are available. Marcus 2 6 further

investigated-these same-,questions and showed the relationship to the quasi-

equilibrium approximation. lThe simplistic optical model analysis2 3'2 7 has

also been used in, this ,area) interrelating the forward and reverse reaction

cross sections. 'The' statistical theory2 8 3 0 has been found to be a useful

diagnostic tool,, since deviations from its predicted (equilibrium micro-

canonical) distribution of product states are a measure of the specific, non-

equilibrium nature ,of. the reactive collisions.

Tlieultimate theoretical description of the dynamics is, of course,

a proper dynamical theory. At the present stage there are still formidable

obstacles in the, path of a full quantal solution of the, reactive scattering

problem.3 1' Thus we .turn to classical mechanical, numerical trajectory
1 ,2332-36calculations, i 2 ,3 3

2
3 6 which attempt to stimulate experiment assuming a

"realistic", adiabatic potential surface and neglect all quantal interference

effects. In what follows we shall assume that at least fragmentary, low-

resolution data or computer-simulated experimental results are available, and

our goal is to extract as much information as possible from the available

"data", whether experimental or calculated.

One of the aims of the present paper is to develop optimal means

of characterizing the distribution of product states (in a given experiment,

at a given total energy), as governed by the reactant state distribution (and

vice versa, i.e., the reactant state distribution yielding a given set of

product states), in terms of any two of the three energy variables ET,, EV,e

ER,. Of course, only two of these are independent quantities (cf.Eq. 2).

It will often be convenient to work with fractional quantities fX' defined

as the fraction of the total available energy in the mode X (where X may

.be T,V,R or the same symbols primed). Throughout the paper attention is

restricted to the energy range below the threshold for collision-induced

dissociation.

Before proceeding further, it is necessary to distinguish between

two classes of data, i.e., "global" and "specific". For a complete statement

of the dynamics of the reaction, one requires the transition probabilities

from all possible initial states to all possible final states. Such a global

representation requires a transition probability matrix, g, whose elements

are mod-squared elements of the S-matrix, such as would be provided by a full



quantal solution to the scattering problem. Neither the experimenter nor

the classical mechanical computer are as ambitious as the quantum mechanic,

however. They are content to describe an incomplete but specific experiment,

i.e., a distribution of product states (or product energies) for a given

set of initial conditions.

One can further distinguish (within the class of "specific"

representations) between a detailed study in which the product distribution

is determined for given, specific initial reactant states, and an "inclusive"

study which yields the product state distribution averaged over the reactant

state distribution. Assuming perfect resolution of internal states, a

global description provides the whole P-matrix. A detailed, specific study

(later referred to as "clusive") characterizes a column (or a row) of the

P-matrix, while an inclusive, specific study provides only an "average"'

over a row or column.

Sec. 2 considers the presentation of the results of a study of

the global dynamics in the form of square-faced "bar" plots; such a plot

provides low-resolution probability contour maps (the poor-man's P-matrix)o

Sec 3 discusses the representation of "specific" results in the form of

a triangular-faced "prismatic" plot. The essential parameters defining

a given internal state distribution are isolated and discussed in Sec. 4o

The "information content" of a product state distribution is considered in

Sec. 5. Transition probabilities and the problem of degenerate (or

experimentally indistinguishable) states are discussed in Sec. 6 (which is

confined to discrete distributions). Sec. 7 is concerned with the

information content of the two types of "specific" experiments, as well

as the "global" type of results. Sec. 8 summarizes the hierarchy of

possible representations that are available for the distribution of products

(and influence of the distribution of the reactants). Seco 9 considers

the problem of defining the information content of a continuous distribution.

Sec. 10 makes the connection with entropy and suggests the concept of an
entropy deficiencv characterizing the specificity of the product state

distribution. Sec. 11 summarizes the important definitions and results.

... . , I . I ,, I;, t ,, ,i. .1,
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2. SQUARE-FACED BAR PLOTS FOR SUMMARIZING RESULTS OF "GLOBAL" EXPERIMENTS

One may "collapse" the transition probability matrix P, at a given E,

to a function of two independent variables ET, ET, (or Eint, Eintl which are

complementary variables). Primes designate products (post-collision variables).

The fractions fT' fT' are convenient reduced variables; thus fT = ET/(ET)max

and fT' 
=

ET'/(ET')max' where (ET)max' (ET,)max are the maximum conservation-
allowed values of ET, ET, respectively (cf. Sec. 1). Thus l-fT and 1 -fT, are

the reduced internal energy of reactant and product molecules, respectively.

Let w(ET,ET,) be the average transition probability
2 5

corresponding to
reactants with ET in the range between ET and ET + dET forming products with

ET, in the range ET,, ET, + dET, (at a given total E). Then

w: TE T, E E (l) . (3)
w(ET'ET') n n' (n',nV' n'

Here n,n' denote the internal states of the reactants and products respectively,

P Is= Sn, n2 is the n + n' state-to-state reaction probability and the sums

are confined to states n,n' in the specified ranges (corresponding to the

ET,ET, increments). The concept of averaged transition probability (and its

symmetry with respect to the interchange of ET and ET,) is further discussed

in Secs. 6 and 9. It is of course clear that the concept of a smooth functional

dependence of w on the two variables ET, ET, implies not only classical mechanics

but also a sufficiently high density of internal states so that the dependence

on the variables is smooth and the limit implied by (3)(both numerator and

denominator are differentials) is well defined. The probability w can be

presented as a contour map in terms of ET, ET, (as in Fig. la) or in terms

of fT' fT' on a unit square (Fig. lb). Of course we must take cognizance

of the relation between the two

:(EX)dE
X

= { (f .df x ·(4)

Note that, in general, w(ET,ET,) is the same quantity for both the forward

and the reverse reaction, and a single contour map is sufficient to characterize

the global dynamics at a specific total energy E. Stacking together such squares

at successively greater values of E yields a "bar plot", whose cross section is

the fT' fT' plane and long axis and the E scale. The loci of the maximum of

(coordinates f m) , f( m) ) are plotted vs. E in Fig. lc.

There are no "global" results available yet, either experimental or

computer-generated, even at a single E, although a considerable amount of

fragmentary information from different sources is known. For example, data
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exist which correspond to vertical or horizontal "slabs" of the bar.

In certain common types of "inclusive" experiments the total

reaction cross section into all product internal states is measured as

a function of E
T
, with reactant internal state distributions essentially

Boltzmann, co6rzespondi ng usually to small fV, fR. Thus f1 is maintained

at a near-constant value slightly less than unity while E (= ET - AEo)

varies directly with ETO This measurement of a(ET) is the most common

one in conventional beam experiments, for example in studies involving
17,18,37 38-40

ionic reagents, collisional ionization of neutrals, and,

recently, for neutral reactants yielding neutral products4 1. Such

experiments amount to summing (or averaging) over all fTt in a "vertical

slab" of a bar-plot such as Fig. lb.

There are more refined, and thus only partially-inclusive,

experiments in which the product translational distribution is measured

as a function of ET 7 (with the reactant internal state distribution held

constant). Here the "vertical slab" has been analyzed in terms of its f,

distribution.

In another type of experiment the reactant internal energy is varied

at nearly constant E (or over a small range of E) and the total reaction

cross section observed,1t 7
1
8,4 2 but with no translational (or internal)

energy analysis 'f :the products. These results correspond to summing over all

fT, for a series of successive vertical slabs at given fT values. An example

of such primary data is shown in Fig. 2, constructed from the results of

Refs. 17 and 43.

'The global results require observations (or computations, at least
.. ', . ,. ,, i..'. ~ !. ]l,,
via classical trajectories) at constant E over an entire square grid of

fT' fTg to establish a contour. map at each of several values of E. Such a
global bar-plot would have practical implications with regard to

optimization of ireaction' yield. The relative importance of ET vs. Ein
t

at

given E can be ascertained by inspection of such~contour map. E., from

Fig. la (at E 10 'units), optimum yield of products for the'endoergic

reaction would be 6btained if the reactants had a value of Eint of 6 units

(e.,() 4 thus (m) = 4 ad E ) = 6 uni'ts). Note that the smallest

'"allowed" value f'E is iET 5 units. Information on both forward and

reverse reactions is contained in the same contour map. The limitation of a

tquare-fa'a;-baop6io siuch as that of Fig. lb is, 'of course, that distinction

is made only b'etwein translational and internal energies, whereas we know
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that the separate internal modes (rotation and vibration) contribute

very differently to the reaction probability. Thus we should consider

the "decomposition" of Eint into its two "components", Ev and ER, and

their separate-effects, as discussed in the next section.
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3. TRIANGULAR-FACED PRISMATIC PLOTS FOR SUMMARIZING RESULTS

OF "SPECIFIC" EXPERIMENTS

The information content of one type of "specific" experiment, e..g

one in which reactant statea are specified, is the coarse-grained

distribution of product states represented as functions of any two

independent variables of the set {ET,C Ev,, ER"} . We may also consider

the inverse of this, i.e., the distribution of reactant states, in terms

of {ET, EV, ERI , which yield a specified distribution of product states

corresponding to the same total energy E. If this specified product state

distribution is chosen to coincide with the reactant state distribution of

the previous experiment, the results of the two experiments are uniquely
24-26related via the principle of microscopic reversibility. The properly

symmetrized measure of reaction probability is either the yield function,44

Y, or the closely-related averaged transition probability,25 w.

The results of a "specific" experiment can be conveniently represented

as a contour map in a plane, with contour lines denoting equiprobable final

states (or initial states, as the case may be).24 Of the several possible

choices of diagrams (see Appendix 1 for details), the equilaterial triangular

one used by Kinsey25 seems preferable, since it maintains complete symmetry

with respect to the three modes T,V,R (or Tv,V',R'). Such a plot is

illustrated schematically in Fig. 3. The coordinate axes are the fractions fx

of the available energy in mode X, and the vertices designated T, V, R

represent 100% of the energy in the specified mode, as usual. Of course, any

two coordinates of the set {fT' fV' fR} suffice to specify the location of

a given point. (Note that such a triangular probability contour map is'not

the same as a triangular map of relative rate constants, as used to display

the chemiluminescence results. 1,24,48)

The most significant single characteristic feature of such a

continuous state distribution or contour map of reaction probabilities

is the location of the maximum probability (and possibly of any subsidiary

maxima, not present in the example shown). The coordinates of the maximum

are designated m), f(m) f(m) any two of which fix the "most probable"

location. The next most significant feature of such a state distribution is:

the "sharpness" of the maximum. This question is discussed in Sec. 4.
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Of course the location of the maximum and its intensity (and curvature)

will depend upon E, but in general one expects that the energy dependence

of the most-probable fraction f(m) in mode X will be less severe than that
(m) 45,46of E(), the most-probable energy itself.

In order to display the overall energy dependence of the state

distribution one can array a "stack" of such contour maps along a total

energy axis, E, perpendicular to the triangular faces, thereby obtaining

a prism, as shown in Fig. 4a. Each cut through the prismatic diagram

represents the energy partitioning at the specified, constant total E.

Fig. 4b summarizes the most significant data, the trajectory of the locus

of the maximum yield as a function of E, analogous to that of Fig. lc.

It should be noted that the entire prismatic plot corresponds to

a certain set of initial conditions specified by fV' fR or, more commonly,

a particular distribution in fV' fR. We may thus distinguish between two

types of "specific" experiments. The first is an "inclusive" type, where

there is a broad distribution of initial reactant conditions (i.e.,

distribution in fV, fR) which give rise to the product distributions in

fV'' fR'' fT' displayed on each triangle. Conversely, for a given

specified fV' fR one has data only on the total product yield and so the

contour map in the triangle summarizes the influence of the initial state

distribution in fV' fR upon the overall reaction probability. An example

of the former is the usual ir chemiluminescence experimentI in which

Boltzmann distributions of reactants at given temperatures describe the

initial conditions and then the experimental results consist of detailed

product state distributions, i.e., w(fV,, fR' ) valid for the set {rV' rR}

at some mean value E of the total energy. An example of the inverse is

an experiment in which the total reaction cross 'section (irrespective of

product states) is measured as a function of EV and/or ER at essentially

fixed E, as in Refs. 17-18.

It is clear that the results of such "inclusive", "specific",

experiments provide only a limited amount of information on the reverse

reaction. This can most easily be seen upon consideration of the square-

faced bar-plots of Sec. 2. An inclusive experiment supplies only the (possibly

weighted) average (or sum) of entries along a row or column and hence cannot

characterize the entire square face.
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As an example, consider a simple case of an exoergic reaction

(cf. Eq. 1) carried out in a crossed beam experiment, with reactant BC

in a Boltzmann internal state distribution (characterized by some temperature

Tint) and with a given relative translational energy distribution, say
Maxwellian (corresponding to some temperature Ttr). Suppose that this,

inclusive, experiment shows that the product ABt is formed with considerable

vibrational excitation. Then all that one may conclude is that, for the

reverse reaction, the use of vibrationally excited ABt as a reactant will

enhance the rate of formation of BC in an essentially equilibrated

Boltzmann internal energy state distribution (characterized by the above-

mentioned temperature T int)4. One cannot rule out the possibility that

(for example) an increase in the translational energy (ET,) would not be

still more advantageous for the production of BC, if no restriction is

placed on the degree of excitation of the BC. Classical trajectory

calculations would be useful to explore such questions in detail for

specific systems4

The more detailed information is provided by a specific "clusive"

experiment. Here one considers the distribution of products for a sharply

defined initial state. The prismatic plots, as in Figs. 3 and 4,represent

a complete summary of the energy disposal for the "forward" exoergic

reaction, in a specific, clusive experiment (ij_, for a narrow range

of f , fR' or, more commonly, at a narrow range of EV, ER). A prismatic

plot represents an enormous amount of detail, more than we would normally

wish to know. Yet, in recording only the energy trajectory of the locus

of the maximum in the contours in Fig. 4b, we have sacrificed too much

detail. What is needed is to characterize succinctly the contour map

in the region of the neighborhood of its maximum. In addition to its

coordinates, one requires its."strength" (or magnitude) and its "sharpness"

(or curvature). This will be considered in the next section.
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4. CHARACTERIZATION OF A PROBABILITY DENSITY ENERGY CONTOUR MAP:

"MOST PROBABLE STATES"

From the discussion in the previous section it appears highly

dosirablo to attempt a concise characterization of an internal energy

contour map, i.e., to consolidate the overabundant detail of such a map

(cf. Fig. 3) by parametrizing its most significant structural features. °

Perhaps the simplest characterization is the one originally used

by Polanyi and others3 to summarize the chemiluminescence results. The

data are "coarse-grained", by considering the relative rate of formation

of product ABt in each excited vibrational state, irrespective of

rotational excitation, and then plot the results as k(fVi vs. fVi(where

fvtdenotes the fraction of the available energy in product vibration).1 ,3

Then one calculates the average value of the fraction in vibration, say

TV1.This implies the average fraction of the available energy released

into relative translation, by difference, to be ~Tr= 1 - TV

1,24,25,48In view of the trend '2 4 '25' 48 toward the use of the more detailed

internal energy contour maps, we should consider the concept of the set

of three averages. {T', T R . For this we need to locate the "center

of gravity" of a triangular probability contour map such as that of Fig. 3.

This result will obviously be different than that for a right triangular

map of relative rate constants.1'2 4 '4 8 For the latter, one could carry

out the averaging independently in the two orthogonal directions (fv' fR)

to obtain fV, TR. In the absence of experiments, a classical mechanical

Monte Carlo computer simulation (for given ET, EV, ER) can readily yield

number distributions in EV, and ER, (considered as independent variables)

from which the first moments can be found, yielding EV, and ER, and thus

TV' and 'R'' (Under certain conditions, the first few moments of a p.d.f.

can be directly obtained, with good accuracy, and with relatively few
51trajectories, without the necessity of computing the entire p.d.f. itself)

However, the thus-obtained average, TV,, is not the same as the

previously mentioned average value of the fraction in vibration, calculated

irrespective of the rotational excitation. It is also not true in general

that T R* + R' equals 1 - T' Clearly there are many pitfalls (or at

least ambiguities of notation) in discussing such averages, and presumably



12

there would be similar caveats applied to any "averages" over triangular

probability contour maps, such as Fig. 3. These considerations suggest

that the characterization of such a map in terms of its "shape" near

the.. maximum is preferable to one in terms of average fractional energy

dispos als.

Before proceeding further, however, it is worth noting that for

all systems thus far studied (either by experiment or computer simulation)

the range of relative probabilities w encompassed by the map is rather

large, Sa, w is usually a strongly varying function of {fx}o It is

therefore convenient to work with the logarithm rather than the original

function itself.

Accordingly we define a new function I (EsV ER) by the relation

w(EVER) E ex ps (EVER) 5)

where the w is the probability of Sees. 2 and 3. Similarly I may be

defined in terms of any other pair of independent energy variables, such

as ET, EVi etc.

In view of our preference to represent the results in terms of

reduced variables, fX e.g.. , in the triangular contour maps such as

Fig. 3, we redefine I accordingly (noting the differential range

relationship of Eq. 4), so that

I (fV' fZ) _lnw(Vf R) (6 a)

I(fT,, fV,) = -gnQ(fTO fV, ) (6b)

and so forth, depending upon the choice of independent variables. In what

follows, to simplify notation, the two independent variables will be

designated x,y.

The locus of the "most probable final state", x( m) y(m) may then

be determined by solving

a, (XY) /aX] . ( - [aI (Xy)/ ay] - 0. (7)
X y(m)

The sharpness of the minimum in I (Xy) is governed by the magnitude

of the three secod derivatives or '"force constants", here designated
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kxx, kxy, kW, defined in the obvious manner:

kxx = [a2I(x,y)/ax2]x m
XX (y) (m)x ,y

C8)
k [a2 .(x,yyaxaY] (m) m) etc.

xy

In the neighborhood of the "most-probable state"; x(m) y( )

we can expand I(x,y) and truncate beyond the quadratic terms. This

should provide a "poor-man's characterization" of the contour map

of the p.d.f. at the specified E; Thus we write

(xy) (m) ,u(mn) , kxx [X X(m)r + k2 [(xxen) (Cy-( ))] ky [ya k y)] (9)
(X,[xx (x 2 I + 2 yy (9)

Unfortunately, even the truncated expression (9) requires a knowledge

of six parameters (two for the locus of the maximum, one for its strength

and three:;''force constants"), all of which may be expected to be E-dependent.

One can simplify the parametrization of the I(x,y) surface by choosing a

new pair of coordinates, say u,w, such that! '

1 u2 1 2
I(u,w) = I(0,O) + 1 u 2+ kw w (10)

Such a normal mode -transformation is readily effected by diagonalizing

the quadratic form ( 9); the details are briefly summarized in Appendix I.

Since the transformation involves a rotation it requires the specification

of one angle. Thus the three original force constants have effectively

been replaced by two new ones plus an angle. The hope is that this angle

will be only slightly energy-dependent, and so there may only be four

paramters which vary significantly with E, of which two of them (the

force constants ku, kw) might be expected to be fairly insensitive to E

(cf. the implications of the hypothetical Fig. 4a).

There are, of course, intermediate levels of detail, providing

more information than just a "poor-man's" specification, yet not as

detailed as the whole probability contour map. One may specify a

distribution for one independent variable only, either by holding the

other variable constant or by integrating over all possible values of
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the other variable, as described earlier. The former corresponds

to a cut along the prismatic plot, the cut line being the line of

constant fx. In particular, such a cut can be made for f = £ (m),

showing the distribution with respect to the other two variables, or

along m WdO (X 0), The latter Is more coon (C_, Pig, 2).
Note that the most probable value of fy can be determined correctly

from a cut at fiM) but not necessarily from an edge cut (or a cut

at any other value of fx). Only if the two variables are truly

independent (j.,., if k t 0) or "uncoupled", are two cuts sufficient

to determine the distribution. 

In the next section we shall consider the implications of the

shape of these p."dof. 's with respect to information content.

. . ..~~~~~~~~~~~~~~~~~~
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5. XINFORMATION CONTENT OF A PRODUCT STATE DISTRIBUTION

One notes upon inspection of a smooth distribution of product

energies (such as the contour map of Fig. 3) or a cut through such a

....S 4~ tibu tion (,cf'.~Fi-g. 2:)s,.that there is more "information content'!

in a narrow distribution (where most of the reaction probability is

concentrated in the vicinity of the "most probable state") than in a

broad distribution. Alternatively stated, there is less "missing

information"5 2
-
5 5 in a narrow distribution. If we know that the

distribution is narrowiwe predict with more confidence that in a future

"experiment" most of the products will be "found" near the maximum of the

distribution. The broader the distribution, the less our ability to make

useful forecasts, as we are missing too much information. Clearly, a

uniform distribution represents the maximal state of ignorance to predict

the outcome of a given "experiment". A narrow distribution (the analog

of a loaded die) implies that the situation is biased, favoring our ability

to forecast the result of a future "experiment" with more confidence.
52

The arguments above apply, of course, to any p.d.f.; Shannon and
53,54others have formalized these arguments by the itroduction of a

quantitative measure of the uncertainty associated with any distribution.

The more the information content of the distribution, the lesser our

uncertainty about the outcome. In an "experiment" with a definite

outcome, the uncertainty is zero. In an "experiment" with a set of

equally probable results, the uncertainty is maximal.

The concept of the information content of a set of discrete
52-55

results of experiments has been fully dealt with in the literature,

based on probabilistic and statistical considerations. It is noted that

the number of ways in which N experiments can result in n different

outcomes, with m1 experiments yielding outcome number 1, m
i
experiments

yielding the i'th outcome, etc., is given by

W = N/ mil N(11
i=l

where . m
i

= N.

Let Pi = mi/N be the inherent probability of the i'th outcome. Then

W NI/' (NPi)! (12)
i--1



16

If all outcomes are equally probable, Pi = Pj = ' = n , then

W = NI/[ (N/n) ] (13)

so that for large N, n we obtain (using Stirling's approximation)

log W = N log n. (14a)

On the other hand, if only a single outcome is possible, i.e., say Pj = 1

and all Pk 0 (k 0 j), then W = 1 and

log W = 0. (14b)

The quantitative measure of information is usually taken to be

I = log W (15 )

such that the uncertainty associated with a pair of independent "experiments"

is the sum of, the independent uncertaintie% s .

Eq. .2 can be rewritten for large N, n, and combined with Eq. 15

to yield:

n
I 3 -N g Pi log Pi ' (16)

i=l

This is an extensive quantity. To obtain the result "per experiment",

this is usually divided by N and written

"I = 'vEP
i lgPi (17)

It is usual to consider the logarithm to be to the base 2, here

designated 1g.

Note that I is a non-negative quantity. It ranges from zero

(cf. Eq.(14b)), when the outcome is certain, to its maximum value

(when Pi = -) of lg n (cf. Eq.(l4a)) and so is a measure of the "missin g"
information content.

In the subsequent sections we shall develop the concept of the

information content measure which is appropriate to the different

representations of .product state distributions (both global and

specific). Towards this eventual goal we consider in the next section
the construct of the averaged transition probability.
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6. TRANSITION PROBABILITIES: DISCRETE DISTRIBUTIONS

Let n and n' be the sets of quantum numbers required to fully

specify the quantal states for the reactants and products respectively.

In general, the experimental arrangement is such that one is unable, in

principle, to fully resolve the internal states 5 7 . The experimentally

indistinguishable states are collected together in the group y

Suppose there are g¥, final states in the group y'. The averaged

transition probability from an initial state in the group y to a final

state in the group y' is then given by2 5

(yy+,) = (gygy,) E Z P (18)
n' ecy'¥ ne n (

Here Pn',n is the detailed, quantal, state-to-state transition probability;

the notation means a summation over those states n included in the group y

Subject to the reservations discussed in Appendix II, microscopic

reversibility2 5 8, 5 9 holds, i.e.

w(yy-w 9 ) =W(y'y ) W ¥(y,y') (19)

The limitations of Eq. (19) should be clearly understood. What is implied

is that only one w(y,y') is necessary to specify both the forward and the

reverse probabilities. This does not imply that a matrix of elements w(y,y')

is symmetric. (In fact such a matrix will not, in general, be square).

Nor that if w(y,y') is small then the rate of the reverse reaction from

state y' to all possible states is necessarily small.

In any particular experiment (or in any'particular plot) the

specification of the initial state may use a coarse-grained scheme

that is less detailed than the groups of indistinguishable states y,

(say,r all: states having internal energy in a given interval). Let r

be the set of possible initial groups of states. If Py is the probability

of finding the system in the initial group y,(ycr), the transition

probability into the final group y' is thus5 9

Py' E C PyW(rY') -;Y') ' (20Oi)
Y yr -·--W'9
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where

w(O') E (r,y,) Q0o

(Note that Py, is just the fractional or relative rate (ky, k;y)

of reaction into the product group y¥). ho&en the initial sta e is

definitely in a particular group y , (eo. Py 1)

PY, Y YW(Y,,)g =g 1 . z P (21)

corresponding to the usual procedure of averaging over initial states

and summing over final states °

One can consider either of two (time-reversal invariant)

probabilitiesD either wa(y¥,y), the averaged probability (which, as is
clear from Eq. (18 ) is bounded by 1), or the yield5

g

Y(yy') = gygy 'toW(Y') (22)

When the initial state is prepared without any attempt to resolve the

states within the group'r then Py s s..ly prsportional to gy and

hence

P, = E(P' /gy) Y(ty') (23)

(Note that P¥ g¥ is the equilibrium condition for the microcanonical

ensemble, ,e. for an ensemble where the total energy is in the range

E to E + dE, all quantum states are equally likely.
6

1
0 6 2

)

The formal theory supporting these results is summarized in

Appendix XI.

As an example of such averaging procedures, consider global datea

We restrict attention in this section to the discrete caseo'A particular

entry in. a poor-msn0 s P-matrix is

Y Y·' I U r

Using Eqs. (2'1.23) this expression becomes:

TY 1 ·c .. Y ·. .

, , ,_
· ')>2T1+Ys/S+E 1nDl/E]
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Here the primed summations are over y and y' (or n and n') in the range

corresponding to the entry in question. (The analogous results for the

case of continuous internal'energies are developed explicitly in Sec.9).

Next we consider a specific-type experiment, where the initial

conditions are identical to those specified previously in w but the final

distribution of products is known. The triangle plot (cf. Fig. 3) can then

be expressed in terms of

(y,) ., P w(yyr )~ ,yEr (26)

Thus

w(r,r,) = E'g ,(Y',)/ E'g¥ , 'Er', . (27)

All the information down a given vertical slab of a bar plot

(which corresponds to specified initial conditions) can be obtainedfrom

a triangle plot for the appropriate specific-type experiment. The necessary

modifications for c'ontinuous distributions are'given in Sec. 9.

- . ..: . ' ...... .
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7. INFORMATION CONTENT: SPECIFIC EXPERIMENTS

In this section we consider the information content of the product

state distribution for the case when a partial resolution of quantum

states is possible. (Continuous distributions are deferred until Sea. 9).

The averaged (over the group y') probability of finding the products

in the state n' is (cf. Eq.(20))

Pn e 'y,/g o (28)

For the case of an "inclusive" specific experiment this becomes

(cf. (20))

Pn' = Z'Pyw(y,y) = w(y') (29)

and for a non-inclusive ("clusive) specific experiment

Pnr _ Aw(yy') * (30)

In both cases

: Pp = P = 1. (31)

It should be clearly stated that (28) assigns equal probability to all

the states within the group y'.(Recall that final states within the

group ¥' are, in principle, indistinguishable, under the experimental

conditions used57.).

The information associated with this product distribution is,

from Eq. (17)

Ip = E P nlgPn

n

=- -. .(Py,/g ,)lg(P ,/gy,) (32)
y n.:¢y'

T Y Y. =--.E Py,.'lg(Py!gy')

Y I Py. Ip(Y¥)
¥t
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where in the second line the inner summation is over g¥, identical

terms. The fourth line serves to define a quantity Ip(Y'), to be

referred to shortly.

Given the experimental product state distribution and thus

the P¥,, one can obtain Ip via Eq. (32) as

Ip = - <lg(Py,/gy,)> (33)

where the average is over the final product distribution. Ip is

clearly bounded:

0 < Ip e lg( g ,) . (34)
Y' 

The lower bound corresponds to all the products being in one particular

group while the upper bound is the microcanonical equilibrium distribution,

i.e. when Py,i gy, (so that the probability of the products being in

the group is proportional to the number of states in the group

(cf. Sec. 6)). These results are essentially those already given in

Sec. 5, Eqs. (14a,b) with Eq. (17) for I.

Ip is a measure of the information content of the whole distribution.

We can also define an information measure of a particular outcome, say y'.

This quantity has been termed6 2 the "'surprisal". It has been anticipated

in Eq. (32) and is defined by

Ip(y') -= lg(P,/gy,) = -.lg(y) . (35)

Thus Ip is the average value of the surprisal:

Ip = PyIpfy') = -E P lg[((y')]= <Ip(y")> . (36)

Eq. (36) and its implications noted below are the main results

of this section. The information content of a distribution is the

average of the information contents of the particular groups, each

group corresponding to a, possible outcome of the reaction. (By

definition, we are unable to distinguish between the members of any

specific groupj.
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It is of interest to compare the surprisal for the two types of

specific experiments, the "clusive'.' and the "inclusive". For the former

the surprisal for a particular outcome is

Ip(y,y') = -lg(Ywy,Y')] (37)

Here Ip(y,y') is the clusive information measure of the outcome y' for the

initial group of states y. In an inclusive experiment one necessarily

first averages over the entire distribution of unresolved initial

groups of states

=(¥') = E0 P¥w(y,y') (38)

and then obtains the information measure (cf. Eq. (20))

Ip(Y) -= lg[(Y') = -lg[EPy W(Y,y')] (39)
Y

It follows from the inequality for convex functions54 '6 3 that

Ipt(Y) > z P Ip (Y,y') . (40)

If we now average these surprisals over all final states to

obtain the information associated with the overall product distribution,

following the procedure of Eqs. (32) and (36), we see that the value of

Ip for the inclusive case (obtained by averaging the £.h.s. of Eq. (40)

over all yo') is greater than the Ip for the clusive case (from the r.h.so

of Eq. (40)). The latter is closer to being the "true" or intrinsic

information associated with the product distribution for the specific

experiment.
Instead of considering the product information measure I , one

P
can consider the information defect with respect to a microcanonical

equilibrium situation (e.g., Eq. (33) vs. the upper bound of Eq. (34) ).

We propose to measure the information defect by the average

deviation of Ip (Y) from its microcanonical equilibrium value

Tp - <[Ip(y') eq - Ip(Y')> (41)

We note that for a microcanonical equilibrium situation at a given

total energy E in the small interval between E and E + dE, all quantum

states are equally probable (a microcanonical ensemble), hence

(P.yi)eq gy't/,gyt (42)
T
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and

[Ip(y')]eq = -lg(E g,) = -lgPy) q/gy,] (43)
Y'

Thus, the information defect is

AIp = I Py, lg [Py/(Py,)eq] (44)
y

It is expected that AIp > 0, with equality holding only for equilibrium.
This follows from Shannon's Lemma: If E P = 1 and , (P)eq = 1, then,

- y' I, y yeqsince lg x >, 1 - x - , with equality if x = 1, then

AIp > P ,[l-(P) eq/Py,] = PY - Z(P eq) (4 )
Y eq Y y-eq

Thus, for any non-equilibrium distribution there is a net positive

information defect, relative to the (microcanonical) equilibrium

distribution. (A small AIp implies a more uniform distribution, a large .

AIp a more sharply peaked distribution.) 

Based on the results following Eq. (40), it is seen that the

information defect for an "imperfect", inclusive type experiment
will be less than the intrinsic value of the information defect as

obtained from an ideal clusive type specific experiment i.e,

(Ip) clusive P (pinclusive ' (46)

Of course, (AIp)clusie is the more correct characterization of the

specific experiment.- It is bounded from above by the information defect

for the (microcanonical) equilibrium distribution.

The equivalence between I and the thermodynamic concept of entropy

was shown by Jaynes5 3 and Khinchin,5 4 based essentially on Shannon's5 2

work. This will be employed and extended to deal with the present
application in Sec. 10.

I
j
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8. GLOBAL AND SPBCIFIC REPRESENTATFONS.

We have introduced a hierarchy of representations, depending on

the resolution obtained, which can be summarized as follows.

(a) Global clusive. This is the most detailed characterization

of the reaction possible (in principle) at a given total energy and

specified experimental conditions. It corresponds to a complete

specification of w(y,y¥) for all possible groups of inital and final

states. w(yy'1)is the "rich experimentalistl 'P'matrix. In contrast,

the rich quantum theorist considers Pn n as the elements of the e-matrixo

However, under given conditions the experimentalist can only determine

the average of Pna n over nEy and n'ey v (cf. (18)).

(b) Specific elusive. The most detailed summary of the specific

ideal experiment, showing the distribution of products w(y,y') for some

initial group of states y. A specific clusive experiment is equivalent

to a column of the global clusive representation.

When one goes over to a continuous distribution of products

(i.e., the classical limit) the specific clusive representation is the

result of a classical trajectory calculation° Figures 3 and 4 are

specific elusive representations.

The current state of the experimental art has not yet reached

the stage where both the initial and final states can be fully specified.

The following three representations take cognizance of this fact, by

averaging over either the detailed distribution of the reactants or of

the products or both. We can thus consider the following.

(c) Specific inclusive. The detailed distribution w(r,y')

of products from some initial ensemble f. This is the distribution most

commonly obtained from chemiluminescence experimentsl-5 and, as discussed

before (cf. (46)), provides an information deficiency that is nearer

to the equilibrium value than that obtained from elusive experiments.

Very recent results6 4 have now provided an insight into the dependence

of w(r,y¥) on the initial ensemble r. Alternatively, one can also consider

w(y,F'), the influence of the reactants? state selection on the probability

of formation of products.
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(d) Global inclusive. A poor man's P-matrix, in the form of (r,r')

say w(fT,fT,), as shown in Figs. 1 and S. An entry in the global inclusive

representation can be obtained by an averaging of w(r,y') (or w(y,r')) over

y' ,y'r' (or over y¢r), as shown in Fig. 5. Along the same lines as the

proof of (40) one can prove that the surprisal associated with w(r,r')

(i.e,--lg w(r,') ) is larger than the average of the surprisals of w(r,y').

Thus, an equivalent statement to (46) obtains. A poor man's P-matrix

is nearer to an "equilibrium" distribution than a rich man's P-matrix.

Any averaging necessarily reduces the information deficiency and brings

the resulting distribution nearer to the equilibrium (or statistical) limit.

To a certain extent, the success of the statistical theory2 8 ' 2 9 depends on

this degradation of information by averaging.

(e) Inclusive . The direct experimental determination of a column

of the global inclusive P-matrix. Here one is concerned with transitions

between some averaged set of reactants (r) to an averaged set of products

(r'), reporting the dependence of w(r,r) either on r' (the averaged

distribution of products) or on r (the averaged role of reactant excitation).

Molecular beam experiments with velocity analysis7- 9 provide the fT,

dependence of w(rfT,). The pioneering studies of the influence of reactant

internal energy were also of this type.

I i

I
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9. INFORMATION CONTENT OF A CONTINUOUS DISTRIBUTION

As discussed in the earlier sections, individual quantum states are

often not resolved and one observes continuous rather than discrete product

state distributlonso Problems involving continuous distributions are
reputed to be more difficult53'5 5 because the concept of "equal probability"

is less clear cut. In the present application, we have dealt with this

problem already even for the discrete case. (Recall that the assumption

expressed by Eq. (28) is that we assign equal intrinsic probabilities to
each state in a group which is, in principle, unresolved experimentally.).

Extension to "valid" continuous distributions requires nothing more,

beside the conversion of summations over quantum numbers to integrations

over energies. Of course, proper care is required to identify equi-probabl.

quantum states; thus appropriate density of states factors are needed.

Our goal is to obtain an explicit expression for the average value

of the suprisal, Ip, for the case of a continuous product (or reactant)

state distribution. We shall consider Ef as the (continuous) energy corresponding
to the formerly discrete variable, say f, which is now (in the "classical case")

continuous. Typically this would be the translational energy ETt (cf. Sec' 2).
The group f is the group of states with energies in the interval Ef to
Ef + dEf and gf - §f(Ef) is the density of states, so that g (El) dEf is
the number of states in that energy interval. Pf = P(Ef) is also now a
continuous p.d.f., with P(Ef) dEf being the (averaged) probability that
the product energy lies in the interval Ef to E£ + dEf. (Similar considerations

apply to reactant state distributions.) ;

The surprisal Ip(f) Ip(Ef) is also now a continuous function of E.f

with the above interval having the information measure Ip(Ef) dEf . By
analogy with Eq. (35), we have

Ip(Ef) "' -lg[P(Ef)/g(Ef)]

, slg[w(Ef)]

Here w(Ef) is the averaged transition probability to the group f, where
the discrete averaging of Sec. 6 (cf. Eqs. (18) and (20)) is now an average;

over a small energy interval. The transition probability to the group f is
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given by

P(Ef)dEf = w(Ef)g(Ef)dEf (48)

(Of course, in practice, this is how one obtains w(Ef) from the observationsJ

Appropriate density-of-states factors (for diatomits in the rigid.rotor-.

harmonic oscillator approximation) suitable for either bar or prism plots,

have been provided by Kinsey.

The information content of the distribution is, as in Sec. 7, the

average of the surprisal (cf. (32))

Ip = <Ip(Ef)> = fdfw(Ef)Ip(Ef)

= fdEf w(Ef)g(Ef)Ip(Ef) (49)

- dEfP (Ef) lg[w(Ef) ].

In the case of more than one energy variable, e.., EV,, ER, as well

as ET,, extension of the above should be readily accomplished, -taking

advantage of the approach of Sec. 4.

In practice the continuous integration in Eq. (49) would be carried out

as a summation over energy "bins":

Ip -Z P(Ey) [lgw(E,)];bE AE (50)
AEy/

(The results should become, asymptotically at least, independent of bin size),

Global results imply a knowledge of the dependence of the reaction

probability upon both initial and final energy variables. In the simple

case of a bar plot (cf. Sec. 2) one can use either the averaged transition

probability w(ET,ET,) or the yield Y(ET,ET,). From Eq. (23)

P(ET,) =' fdETf(ET)Y(ET,ET,) , (51)

where g(ET)f(ET)dET is the fraction of initial states with ET in the range

ET to ET + dET . Similarly from Eq. (20)

7(ET,) = dE.Tg(ET) f(ET)E (52)

Corresponding results hold for the integration over ET, .

.. .. .. . : .,; k V .. , .. \ ...
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10. ENTROPY DEFICIENCY OF A PRODUCT STATE DISTRIBUTION

There is a well-established equivalence between information content

and the thermodynamic concept of entropyo5 2 -5 5 , 6 2 In the case of

equilibrium distributions the situationi is clear cut, but in the present

non-equilibrium context it must be admitted that our recipe for assigning

probabilities by the equilibrium rule ".all quantum states of the same energy

are equally probable" is less secure. Nevertheless this is the simplest

means of extending the more familiar squivalence to the problem of the

characterization of a non-equilibriEum product state distribution. 6 5

Assuming the validity of the equivalence, we next establish the

practical connection between Ip and S in terms of numerical magnitudes

and units. From Eq. (17), if I, the "missing information content", is

based on the logarithm to the base 2, iLeo9 I m lg Wd, then to obtain the

usual result for the entropy, S a k log WJ from Eq. (15) one must TWrite

S (= k log e2) I (53)

A measure of the specificity uf T rection i.s the entropy

deficiency in the product state distribution, whach can be expressed

AS' = (k loge2) hAp (54)

P
with AIp given by Eq. (44). In practical cemens9 (i.e., for one mole of

reaction), the entropy deficiency is thus ASteo.u) = o.38AI . We recall

that the units of information
6 6

are bitsp with 1 bit = Qg2 o Since the size

of the entropy deficiency AS' is perforce limited (i.e., the bound being

commensurate with the magnitude of standard entropy change of reaction AS° )

there appears to be an intrinsic upper bound on Alp (bits).

The entropy deficiency would be zero if the product state

distribution were that predicted by a phase-space or statistical (density-

of-states) theory. For all actual situations AS'is intrinsically positive.

In principle, the product state distribution of a clusive specific experiment

would be suitable for analysis to ascertain the entropy deficiency AS"

of the reaction (although, due to imperfect reactant-state selection and

product resolution, it would yield only a lower-limit estimate of AS).

One can recognize a hierarchy of experiments leading to a range of

AS/value.. In the Qabence of data, forced to use a tatitistieal theory0 we

start with AS'n 0 . As we continuously sharpen the experiments the computed

AS will be larger96 7 finally the limit of wesl=defined reactant and product

states (from a Rlobal clusive
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representation) would yield the proper intrinsic value of the entropy

deficiency for the reaction at the total energy E. Presumably one would

then be in a position to consider the overall dependence on E.

Clearly the concept of an entropy deficiency AS should also
68be a useful one in characterizing the poor-man's P-matrix. Whether it can

be illuminating physically is considered in the second paper in this
series. Its relationship to the heuristically valuable concept of .an

entropy of activation for a canonical system at a 'temperature T remains
to be established.

· .... 
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11. SUMMARIZING REMARKS

This paper has attempted to characterize the product (and reactant)

energy distibu-ions obtained in reactive scattering experiments or computer

simulations, Suitable forms of plotting results of global or specific-type

experiments have been suggested in Secs. 2 and 3 (see Figs. 1, 3, 4). Means

of parametrization of specific type results in terms of an expansion around

the most-probable states were developed in Seco 4, with the most compact

form being that of Eq. (10).

The question of the information content of a discrete product state

distribution was discussed in Secso 5 - 7 with the important results being

those of Eq. (27) for I, Eq. (32) for Ip and Eq. (44) for Alp (the

information defect). Sec. 8 summarizes the types of representations used

and their interrelations and stresses the concept of the degradation of

information by averaging. The information defect, AIp, is shown to decrease

with any additional averaging. The intrinsic Alp can only be obtained from

clusive experiments. Any less detailed results yield only a lower bound.

In Sec; 9 the generalization was made to continuous distributions, with

the results for Ip given in Eqs. (49) - (50).

Finally, the concept of entropy deficiency AS was proposed in

Sec. 10 and quartified in Eq. (54).

Obviously there are many theoretical as well as practical

ramifications of the present, rather preliminary, investigation. These

are currently being pursued.
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APPENDIX I

There are at least three ways in which one can plot a function

I (ET, EV, ER) whose variables satisfy a conservation relation, i.e.,

Eq. (2). (a) An equilateral triangular plot, as discussed in Sec; 3.

(b) A cartesian axis plot, as used in Refs. 24, 48, etc. and (c) a

triangular plot where the skewing angle is defined so as to diagonalize

the function I about the minimum.

The advantage of choices (b) and (c) is the ease of diagonalizing

the function. For the cartesian case, one requires a unitary matrix U, say

(cose sine
U = 1 (A.1)

~-sine cose /

Here O is determined such that

( xx X ) Ut (A.2)

xy kyy s

In this case, the maximum is determined by its two coordinates, by the

angle e and the two diagonal derivatives k
c

and k
s
. Case (a) is analogous

to case (b) but requires a pretransformation from the skewed coordinates

to cartesian coordinates.

Case (c) is analogous to the method of plotting the potential

energy surface for collinear collisions, with the exception that here one

chooses the axis not to diagonalize the kinetic energy but what corresponds

to the potential energy. In fact, we have loosely referred to the second

derivatives of I as the "force constants". This is not simply because of

the mathematical analogy but because of "thermodynamic" reasons (to be

discussed elsewhere).

Choosing EV and ER as the independent variables we scale the ER

axis by c (i.e., to be plotted is ER/c) and tilt it by the angle 0 from

the (vertical) y, axis. Thus

-E c = cY, secoR
(A.3)

EV=X -Y tane

,,;.. . . A;. .. 
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where EV is parallel to the X axis. The angle is selected to eliminate

any cross derivative, i.e.,

(C-n) kxy/k (A. 4)

and the scale c is defined so that k. = kx or

c2 = kxx/ky (A.5)

sin.2 = k/k . (A.6)

With these choices,

I(XY) = I(X(m) y(m)) + 1 p2k2 (A.7)

where

P2 -(X (m) 2 + (m))2 (Ao8)

and k 2 , k. Superscript (m) denotes the most probable value.xx
In this way the maximum has five parameters (EV(m) E(m), c, e and k)

but only one second derivative.
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APPENDIX II

We are concerned with transitions between two sets of states P - {f

and r - e . Let p(r) and p(rl) be the appropriate density matrices

for the two soets, One can then define the rate constants fo£ the forward
and reverse reaction 5

9 ' 6 0

(r -P r9)=T;fP( )S p(r1)3St/l Cpir)l (.1) 
and

' ~·r,_r/ )=T-~ep r) S fgr) sf 3/ k Or, ) ' c .M(B-2)
In both cases we average over the initial ensemble and sum over the final

ensemble. When the states in the group ' cannot be resolved under the

given experimental conditions they are taken to be equiprobable.5 9 The

yield function and averaged transition probability are defined by

(y' (r- r )r')-- [t pr) sip(r)9 s- 3} (B. 3)

and

her-+r)= yicr- rf)nirn, -(rplrB4)
The yield functiony( r-wP5 represents the sum of the transition

probabilities while the probability function (rP->r ') is the averaged

transition probability, evaluated at a specified total energy E.

If p(r) and p( l) are separately invariant under time reversal,

(not necessarily always the case) then both y(r--1 P') and arl.- r
are also invariant, i.e.,

y(r-,rl: y(r' ,) y (, r,) (B.5)
and similarly for (rlrPi). When pr) is a microcanonical distribution

one can use the shorthand notation Y(E) (or 3)(E)).

In general, it has been shown (i.e., Ref. 59, p. 143) that the

time-reversed form of an operator, here denoted by a bar, is given by

- pi;~~~~~r`~) = Oe~~pt6~)e~ :(B. 6)

'where e is the time-reversal operator. Since the density operator

is Hermitian, it is time reversal invariant if
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(B.7)(r) = p(r)' D-
Using the properties of the trace one can go through the following sequtncB

of operations and show thaty(Cr-,r) y (r-n.

If p p 

T£r fflr)S p (r 1) st~ - Tr T p(r')
(B. 8)

9-s - =Tr '(V) f'sto(r) gi 9

From Eq. (B.6) (or Ref. 59, p. 147),

S = I9 s t'D1
-

and since a2. ,

5 - s- St G ,
Thus the last term fn the right hand side of Eq. (B.8) becomes

~Cpir')s p(r) s+e,
seen to be the same as the first term (the l.h.s.) with r 
interchanged.

Then

y (P -~r ) =Tv ~?(r)s

T= Tq p') = y(r L,

as expected, so

Stp (r)

(B .9)

(B. 10)

and pr

r) (B 11) 

= pCr)

=rfe p r) C'st () P

pIrP~(r

spCr)stf

y(r, r')=Y(r r) (.:.)y(v---- r ') =Y yr '--7r)=

/) s0¢
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Legend for Figures

1. (a) Contour map of w (ETET,ET) at a fixed value of the total energy,

E - 10 units, for a (hypothetical) exoergi¢ reaction for which -AEo - 5

units. Thus ET and ET, range°from 0 to 5 and 0 to 10 units, respectively.

(b) A square-faced bar plot w(fT,fTt) for the same reaction, showing the

dependence of the contour map upon the total energy, over the range

10 .E c 50 units. The "trajectory" of the maximum of w as a function

of E appears as the heavy curve passing down the length of the bar.

For the purpose of drawing the results in (a) and (b) they were scaled such

that, at the maximum, w has been assigned the value 1, i.e., W(m)(E) = i

(A similar comment applies to Figs. 3-5.) An actual experiment (or compu-

tation) would also provide the energy dependence of the peak value, W(m)(E).

Thus, besides Fig. l(c) one would also require a figure showing w(m) vs. E

'(m) and f(m)
(c) The coordinates of the loci of the maximum, i.e., fT and fT , plotted

vs. total energy E over the same range as in (b).

2. Comparison of the effect of EV with that of ET upon the totAl reaction

cross section for the reaction N2(v) + 0 -) NO + N (AEo = 1.leV). The

E
V

dependence is taken from Ref. 17, while the ET dependence is from Ref. 43.

3. Triangular product contour map of W(fT, fv' fR'i fV' fR) for some fixed

(but here unspecified) fV ' fR' E. In the example shown, the locus of the

most probable W is fT' 0.15, fR' = 0.25, fv, = 0.60 (most of the avail-

able energy going into product vibrational excitation). Here and in Fig. 4

the triangular'maps represent the results of saecific clusive experiments.

(cf. Sec. 8).

4. (a) Prismatic plot of w(fT,' fV ' fR, ' fV' fR ) showing the dependence of

the triangular contour map of Fig. 2 upon the total energy E (5 < E d 20 units).

(b) The coordinates of the loci of the maximum, i.e. fT() fV(m f(m)

plotted vs. E over the same range as in (a).
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5. '"Decomposition" of a single point on the square contour map wCfT, fTT)

into its two "tcomponents", ,.e., cuts through the two triangular con-

tour maps W(fV' fR' a; fTu) and (CfVr, fR, b; T). The global maps

here and in Fig. 1 are global inclusive representations. Thus these

triangular maps represent specific inclusive experiments.
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